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Elliptic Curves

Over Q

Theorem (Mordell, [Mor22])

E : y2 “ f pxq, f pxq P Qrxs ñ E pQq is finitely
generated.

rankpE pQqq “ ?

GalpQ̄{Qq acts on E pQ̄q.
ρE ,p : GalpQ̄{Qq Ñ GLpE rpsq – GL2pFpq.

Question

What can we say about ρE ,p ?

Λ “ Zω1 ` Zω2

E r5s
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Elliptic Curves

Theorem (Serre’s Open Image Theorem, [Ser72])

E defined over Q without complex multiplication. Then
rGL2pFpq : Im ρE ,ps ď cE .

Conjecture (Serre’s uniformity conjecture, [Ser72])

Dc, independent of E , such that rGL2pFpq : Im ρE ,ps ď c .

Maximal subgroups of PGL2pFpq

Borel subgroups -

ˆ

˚ ˚

0 ˚

˙

Normalizer of a split Cartan -

ˆ

˚ 0
0 ˚

˙

Normalizer of a non-split Cartan - Fˆ
p2 ãÑ GL2pFpq

Exceptional - A4, S4,A5
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Modular Curves

Moduli Spaces

SL2pZqzH „
Ñ tΛ Ď Cu{ „Ñ tElliptic curves over Cu{ „

τ ÞÑ Λτ “ Zτ ` Z ÞÑ Eτ “ C{Λτ
YΓpCq “ ΓzH, Γ Ď SL2pZq
XΓpCq “ ΓzH˚

Cusps
2.4 Cusps 59

Figure 2.5. Neighborhoods of ∞ and of some rational points

Proof. The first statement requires distinct points x1, x2 ∈ X(Γ ) to have
disjoint neighborhoods. The case x1 = Γτ1, x2 = Γτ2 with τ1, τ2 ∈ H is
already established as Corollary 2.1.2.

Suppose x1 = Γs1, x2 = Γτ2 with s1 ∈ Q ∪ {∞} and τ2 ∈ H. Then
s1 = α(∞) for some α ∈ SL2(Z). Let U2 be any neighborhood of τ2 with
compact closure K. Then the formula

Im(γ(τ)) ≤ max{Im(τ), 1/Im(τ)} for τ ∈ H and γ ∈ SL2(Z)

(Exercise 2.4.2(a)) shows that for M large enough, SL2(Z)K ∩ NM = ∅. Let
U1 = α(NM ∪ {∞}). Then π(U1) and π(U2) are disjoint (Exercise 2.4.2(b)).

Suppose x1 = Γs1, x2 = Γs2 with s1, s2 ∈ Q ∪ {∞}. Then s1 = α1(∞)
and s2 = α2(∞) for some α1, α2 ∈ SL2(Z). Let U1 = α1(N2 ∪ {∞}) and
U2 = α2(N2 ∪ {∞}). Then π(U1) and π(U2) are disjoint, for if γα1(τ1) =
α2(τ2) for some γ ∈ Γ and τ1, τ2 ∈ N2 then α−1

2 γα1 takes τ1 to τ2 and
(since N2 is tessellated by the integer translates of D and contains no elliptic
points) therefore must be ± [ 1 m

0 1 ] for some m ∈ Z. Thus α−1
2 γα1 fixes ∞

and consequently γ(s1) = s2, contradicting that x1 and x2 are distinct. This
completes the proof that X(Γ ) is Hausdorff.

Suppose H∗ = O1 ∪ O2 is a disjoint union of open subsets. Intersect with
the connected set H to conclude that O1 ⊃ H and so O2 ⊂ Q ∪ {∞}. But
then O2 is not open after all unless it is empty. Thus H∗ is connected and
hence so is its continuous image X(Γ ).

For compactness, first note that the set D∗ = D∪{∞} is compact in the H∗

topology (Exercise 2.4.3). Since H∗ = SL2(Z)D∗ =
⋃

j Γγj(D∗) where the γj

are coset representatives, X(Γ ) =
⋃

j π(γj(D∗)). Since each γj is continuous
and π is continuous and [SL2(Z) : Γ ] is finite, the result follows. )*

Making X(Γ ) a compact Riemann surface requires giving it charts. Retain
the coordinate patches π(U) and maps ϕ : π(U) −→ V from Section 2.2 for
neighborhoods U ⊂ H. For each cusp s ∈ Q ∪ {∞} some δ = δs ∈ SL2(Z)
takes s to ∞. Define the width of s to be

hs = hs,Γ = |SL2(Z)∞/(δ{±I}Γδ−1)∞|.

SL2pZqzH
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Modular Curves

Moduli Spaces Over Q̄

H Ď GL2pZ{NZq, φ : E rNs Ñ Z{NZˆ Z{NZ
pE , φq „H pE

1, φ1q ðñ Dh P H, ι : E Ñ E 1 s.t. h ˝ φ “ φ1 ˝ ι

SpHq “ tpE , φqu{ „H

pE , φqσ “ pEσ, φ ˝ σ´1q σ P GalpQ̄{Qq
pE , φq rational iff E rational and φ ˝ GalpQ̄{Qq ˝ φ´1 Ď H

ΓH Ď SL2pZq, YΓH
“ SpHq

Congruence subgroups

ΓpNq “ kerpSL2pZq Ñ SL2pZ{NZqq
Borel - Γ0pNq

Normalizer of split (non-split) Cartan - Γ`s pNq, Γ`nspNq
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Modular Curves
Serre’s uniformity conjecture

Theorem (Serre, [Ser72])

For p ą 13, H Ď GL2pFpq exceptional, the modular curve XΓH
has

no rational points.

Theorem (Mazur, [Maz77])

For p ą 37, the modular curve X0ppq has no non-CM, non-cuspidal
rational points.

Theorem (Bilu, Parent, Rebolledo, [BPR13])

For p ą 13, the modular curve X`s ppq has no non-CM,
non-cuspidal rational points.

Conjecture (Serre’s uniformity conjecture)

For p ą 11, the only Q-points of the modular curve X`nsppq are CM.
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Numerical Evidence

Theorem (Balakrishnan, Dogra, Müller, Tuitman,
Vonk, [BDM`19])

The modular curve X`nsp13q has exactly 7 rational points, all of
which are CM.

Theorem (Mercuri, Schoof, [MS20])

For p “ 17, 19, 23, there are no ”small” rational points on X`nsppq,
other than the seven CM points.

Explicit equations

Theorem (Baran, [Bar14])

The modular curve X`nsp13q is defined by the equation

p´y ´ zqx3 ` p2y2 ` zyqx2`

p´y3 ` zy2 ´ 2z2y ` z3qx ` p2z2y2 ´ 3z3yq “ 0.
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Equations and the canonical map

Theorem (Petri’s Theorem*)

X curve over k of genus g . ω1, . . . , ωg P H
0pX ,Ω1q define

pω1, . . . , ωg q : ϕ : X Ñ Pg´1.

If X is not hyperelliptic, ϕ is an embedding. Let
I pX q “

À8
d“0 IdpX q be the ideal of relations. Then

1 dimk I2pX q “ pg ´ 2qpg ´ 3q{2 and
dimk I3pX q “ pg ´ 3qpg2 ` 6g ´ 10q{6.

2 If g ě 4, I pX q is generated by I2pX q and I3pX q.

3 If g “ 3, I pX q is generated by I4pX q and dimk I4pX q “ 1.

Strategy

Compute a basis for H0pX ,Ω1q, look for enough polynomial
relations of small degrees.

Eran Assaf Equations for modular curves



Modular Forms

weight k action

α “

ˆ

a b
c d

˙

P SL2pZq, f : HÑ C

f |rαsk pzq “ pcz ` dq´k f pαzq.

Definition (Modular form of weight k for Γ)

f : HÑ C holomorphic s.t. f |rγsk “ f for all γ P Γ and f |rαsk is
holomorphic at 8 for all α P SL2pZq.

q-expansion

If ΓpNq Ď Γ,

ˆ

1 N
0 1

˙

P Γ, f pz ` Nq “ f pzq, so

f pzq “
8
ÿ

n“0

anq
n
N qN “ e

2πiz
N .

Eran Assaf Equations for modular curves



Modular forms as differentials

Holomorphic differentials

AkpΓq “ π‹Ω
bk{2
mer pXΓq (π : H˚ Ñ XΓ)

MK pΓq – H0pXΓ,Ω
1p∆qbk{2q, SkpΓq – H0pXΓ,Ω

bk{2q

S2pΓq – Ω1
holpXΓq, pω1, . . . , ωg q : XΓ Ñ Pg´1

Example

Gkpτq “
ř1

pc,dq
1

pcτ`dqk
PMkpSL2pZqq

Fourier expansion - Gkpτq “ 2ζpkq ¨
´

1´ 2k
Bk

ř8
n“1 σk´1pnqq

n
¯

dimM8pSL2pZqq “ 1 ñ G8 “ C ¨ G 2
4

∆pτq “ p60G4pτqq
3 ´ 27p140G6pτqq

2 P S12pSL2pZqq

jpτq “ 1728 p60G4pτqq
3

∆pτq P A0pSL2pZqq
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Computing q-expansions

Theorem ( [MS20], [Zyw20])

Let G Ď GL2pZ{NZq be s.t. ´1 P G and detpG q “ pZ{NZqˆ.
Then XG “ XΓG

is defined over Q and

SkpΓpNq,QpζNqqG – SkpΓ,Qq.

Action on cusp forms

Zywina [Zyw20] computes the action of GL2pZ{NZq on
q-expansions. Computes a basis for S2pΓpNq,QpζNqqG .

Issues

The space S2pΓpNq,QpζNqq is much larger than S2pΓ,Qq.
Uses numerical approximation with large denominators.
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Modular Symbols

H1pX0p39q,Zq

H1pXΓ;Rq “ Ω1
holpXΓq

_

tz1, z2u ÞÑ

´

ω ÞÑ
şz2

z1
ω
¯

tz1, z2u ` tz2, z3u ` tz3, z1u “ 0

tz1, z1u “ 0

xtαz1, αz2u, ωy “ xtz1, z2u, ω ˝ αy
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Modular Symbols

Modular Symbols

F “
À

α,βPP1pQq Z ¨ tα, βu, R “ tα, βu ` tβ, γu ` tγ, αu
M2 “ pF {Rq{pF {Rqtor

Mk “ ZrX ,Y sk´2 bM2

MkpΓq “ pMkqΓ modulo torsion.

Example

X 3 b t0, 1{2u ´ 17XY 2 b t8, 1{7u PM5

Theorem (Manin, [Man72])

ϕ : M2pΓq Ñ H1pXΓ, cusps,Zq is an isomorphism.

Eran Assaf Equations for modular curves



Modular Symbols

Pairing with modular forms

`

SkpΓq ‘ S̄kpΓq
˘

ˆMkpΓq Ñ C

xpf1, f2q,Ptα, βuy “

ż β

α
f1pzqPpz , 1qdz `

ż β

α
f2pzqPpz̄ , 1qdz̄

Cuspidal modular symbols

B2 “
À

αPP1pQq Z ¨ tαu, Bk “ ZrX ,Y sk´2 b B2

BkpΓq “ pBkqΓ modulo torsion.

SkpΓq “ kerpB : MkpΓq Ñ BkpΓq)

Theorem (Shokurov, [Sho80] + Merel, [Mer94])

The pairing

x¨, ¨y :
`

SkpΓq ‘ S̄kpΓq
˘

ˆ SkpΓ;Cq Ñ C
is a nondegenerate pairing of complex vector spaces
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Modular Symbols

Manin symbols

rP, Γg s “ gpPt0,8uq PMkpΓq

 “

X k´2´iY i , Γg
‰(k´2

i“0,gPΓzSL2pZq
generate MkpΓq.

x ` xS “ 0, x ` xpST q ` xpST q2 “ 0, x ´ xJ “ 0

Great for computation!

Can compute the vector space SkpΓq “
`

SkpΓq ‘ S̄kpΓq
˘_

.

If Γ is of real type, SkpΓq “ pSkpΓq`q
_

, so also SkpΓq.

That’s great, but what about q-expansions?
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Twisting method

Definition (twist of a modular form)

Let f “
ř8

n“0 anq
n, χ : pZ{NZqˆ Ñ C primitive. Write

fχ “
8
ÿ

n“1

anχpnqq
n.

Let

SN “

ˆ

N 1
0 N

˙

, Rχ “
ÿ

u mod N

χpuqSu
N .

Then Rχpf q “ gpχq ¨ fχ.

Theorem (Atkin, Li, [A`78] + Box [Box20])

Let V Ď S2pΓpNq,QpζNqq be an irrep of GL2pZ{NZq. Then there
exists a newform f such that V is spanned by tRχ ˝ αdpf quχ,d .
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From modular symbols to q-expansions

Twisting modular symbols

Box in [Box20] computes S2pΓpNqq
G X Vi for each irrep. Vi , finds

the newform fi , and thus computes a basis of q-expansions.

Working directly with Γ

In [Ass20], can compute* Hecke operators for SkpΓq.
Finds systems of eigenvalues.

Computes the action of Hecke operators on the q-expansions
at all the cusps.

In particular, recovers the above elements fi .

Given a q-expansion, can compute the period map.

Also computes Eisenstein series - could that be of use?
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Demonstration...

Thanks for listening!
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