Equations for modular curves

Eran Assaf

Dartmouth College

Dartmouth Algebra and Number Theory Seminar, October 2020

Over Q

Theorem (Mordell, [\[Mor22\]](#page-20-0)) $E: y^2 = f(x), f(x) \in \mathbb{Q}[x] \Rightarrow E(\mathbb{Q})$ is finitely generated.

- rank $(E(\mathbb{Q})) = ?$
- Gal (\bar{Q}/\mathbb{Q}) acts on $E(\bar{Q})$.
- $\rho_{E,p}$: Gal $(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL(E[p]) \cong GL_2(\mathbb{F}_p)$.

Question

What can we say about $\rho_{E,p}$?

Elliptic Curves

Theorem (Serre's Open Image Theorem, [\[Ser72\]](#page-20-1)) E defined over Q without complex multiplication. Then $\lceil GL_2(\mathbb{F}_p) : \text{Im } \rho_{F,p} \rceil \leqslant c_F$.

Conjecture (Serre's uniformity conjecture, [\[Ser72\]](#page-20-1)) \exists c, independent of E, such that $\lceil GL_2(\mathbb{F}_p) : \text{Im } \rho_{E,p} \rceil \leqslant c$.

Maximal subgroups of $PGL_2(\mathbb{F}_p)$ $\frac{1}{2}$

- $\frac{1}{2}$ $\frac{1}{2}$ 0 ˚
- Normalizer of a split Cartan $\begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix}$
- Normalizer of a non-split Cartan $\mathbb{F}_{n^2}^{\times}$ $\sum_{p^2}^{\times}$ \hookrightarrow $GL_2(\mathbb{F}_p)$
- Exceptional A_4 , S_4 , A_5

0 ˚

Modular Curves

Moduli Spaces

$$
SL_2(\mathbb{Z})\backslash \mathcal{H} \xrightarrow{\sim} \{\Lambda \subseteq \mathbb{C}\} / \sim \rightarrow \{\text{Elliptic curves over } \mathbb{C}\} / \sim
$$

$$
\tau \mapsto \Lambda_\tau = \mathbb{Z}\tau + \mathbb{Z} \mapsto E_\tau = \mathbb{C}/\Lambda_\tau
$$

$$
\bullet \ \ \mathsf{Y}_{\Gamma}(\mathbb{C}) = \Gamma \backslash \mathcal{H}, \ \Gamma \subseteq SL_2(\mathbb{Z})
$$

$$
\bullet\ X_\Gamma(\mathbb{C})=\Gamma\backslash\mathcal{H}^*
$$

Figure 2.5. Neighborhoods of ∞ and of some rational points

Modular Curves

Moduli Spaces Over \overline{Q}

 $H \subseteq GL_2(\mathbb{Z}/N\mathbb{Z}), \phi : E[N] \rightarrow \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ $\phi(E,\phi) \sim_H (E',\phi') \iff \exists h \in H, \iota : E \to E' \text{ s.t. } h \circ \phi = \phi' \circ \iota.$

$$
\bullet \ \mathcal{S}(H) = \{ (E, \phi) \} / \sim_H
$$

$$
\bullet \ \ (E,\phi)^{\sigma}=(E^{\sigma},\phi\circ\sigma^{-1}) \quad \sigma\in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})
$$

 (ε, ϕ) rational iff E rational and $\phi \circ$ Gal $(\bar{ \mathbb{Q}}/{ \mathbb{Q}}) \circ \phi^{-1} \subseteq H$

$$
\bullet \ \Gamma_H \subseteq SL_2(\mathbb{Z}), \ Y_{\Gamma_H} = S(H)
$$

Congruence subgroups

- \bullet $\Gamma(N) = \text{ker}(SL_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}/N\mathbb{Z}))$
- Borel $\Gamma_0(N)$
- Normalizer of split (non-split) Cartan $\Gamma_s^+(N)$, $\Gamma_{ns}^+(N)$

Theorem (Serre, [\[Ser72\]](#page-20-1))

For $p > 13$, $H \subseteq GL_2(\mathbb{F}_p)$ exceptional, the modular curve X_{Γ_H} has no rational points.

Theorem (Mazur, [\[Maz77\]](#page-19-0))

For $p > 37$, the modular curve $X_0(p)$ has no non-CM, non-cuspidal rational points.

Theorem (Bilu, Parent, Rebolledo, [\[BPR13\]](#page-19-1))

For $p > 13$, the modular curve $X_s^+(p)$ has no non-CM, non-cuspidal rational points.

Conjecture (Serre's uniformity conjecture)

For $p > 11$, the only Q-points of the modular curve $X^+_{ns}(p)$ are CM.

Numerical Evidence

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk, $[BDM+19]$

The modular curve $X_{ns}^{+}(13)$ has exactly 7 rational points, all of which are CM

Theorem (Mercuri, Schoof, [\[MS20\]](#page-20-2))

For $p = 17, 19, 23$, there are no "small" rational points on $X^+_{ns}(p)$, other than the seven CM points.

Explicit equations

Theorem (Baran, [\[Bar14\]](#page-18-1))

The modular curve $X_{ns}^{+}(13)$ is defined by the equation

$$
(-y - z)x3 + (2y2 + zy)x2 +
$$

$$
(-y3 + zy2 - 2z2y + z3)x + (2z2y2 - 3z3y) = 0.
$$

Theorem (Petri's Theorem*)

 X curve over k of genus g. $\omega_1,\ldots,\omega_g\in H^0(X,\Omega^1)$ define $(\omega_1, \ldots, \omega_g) : \varphi : X \to \mathbb{P}^{g-1}.$

If X is not hyperelliptic, φ is an embedding. Let If X is not hyperelliptic, φ is an embedding. Let
 $I(X) = \bigoplus_{d=0}^{\infty} I_d(X)$ be the ideal of relations. Then

0 dim_k
$$
l_2(X) = (g-2)(g-3)/2
$$
 and
dim_k $l_3(X) = (g-3)(g^2 + 6g - 10)/6$.

• If
$$
g \ge 4
$$
, $I(X)$ is generated by $I_2(X)$ and $I_3(X)$.

3 If $g = 3$, $I(X)$ is generated by $I_4(X)$ and dim_k $I_4(X) = 1$.

Strategy

Compute a basis for $H^0(X,\Omega^1)$, look for enough polynomial relations of small degrees.

Modular Forms

weight k action

$$
\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), \ f: \mathcal{H} \to \mathbb{C}
$$

$$
f|_{[\alpha]_k}(z) = (cz + d)^{-k} f(\alpha z).
$$

Definition (Modular form of weight k for $Γ$)

 $f: \mathcal{H} \to \mathbb{C}$ holomorphic s.t. $f|_{[\gamma]_k} = f$ for all $\gamma \in \Gamma$ and $f|_{[\alpha]_k}$ is holomorphic at ∞ for all $\alpha \in SL_2(\mathbb{Z})$.

q-expansion

If
$$
\Gamma(N) \subseteq \Gamma
$$
, $\begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \Gamma$, $f(z + N) = f(z)$, so

$$
f(z) = \sum_{n=0}^{\infty} a_n q_N^n \quad q_N = e^{\frac{2\pi i z}{N}}.
$$

Holomorphic differentials

$$
\bullet \ \mathcal{A}_{k}(\Gamma) = \pi^{\star}\Omega_{\text{mer}}^{\otimes k/2}(X_{\Gamma}) \ (\pi : \mathcal{H}^{*} \to X_{\Gamma})
$$

$$
\bullet \ \mathcal{M}_K(\Gamma) \cong H^0(X_{\Gamma}, \Omega^1(\Delta)^{\otimes k/2}), \ \mathcal{S}_k(\Gamma) \cong H^0(X_{\Gamma}, \Omega^{\otimes k/2})
$$

•
$$
S_2(\Gamma) \cong \Omega_{hol}^1(X_{\Gamma}), (\omega_1, \ldots, \omega_g) : X_{\Gamma} \to \mathbb{P}^{g-1}
$$

Example

•
$$
G_k(\tau) = \sum_{(c,d)}' \frac{1}{(c\tau + d)^k} \in \mathcal{M}_k(SL_2(\mathbb{Z}))
$$

• Fourier expansion -
$$
G_k(\tau) = 2\zeta(k) \cdot \left(1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n\right)
$$

$$
\bullet\,\,dim\,\mathcal{M}_{8}(SL_2(\mathbb{Z}))=1\Rightarrow\mathcal{G}_{8}=\mathcal{C}\cdot\mathcal{G}_{4}^{2}
$$

•
$$
\Delta(\tau) = (60G_4(\tau))^3 - 27(140G_6(\tau))^2 \in S_{12}(SL_2(\mathbb{Z}))
$$

$$
\bullet \, j(\tau) = 1728 \frac{(60 \mathsf{G}_4(\tau))^3}{\Delta(\tau)} \in \mathcal{A}_0(SL_2(\mathbb{Z}))
$$

Theorem ([\[MS20\]](#page-20-2), [\[Zyw20\]](#page-20-3)) Let $G \subseteq GL_2(\mathbb{Z}/N\mathbb{Z})$ be s.t. $-1 \in G$ and $\det(G) = (\mathbb{Z}/N\mathbb{Z})^{\times}$. Then $X_G = X_{\Gamma_G}$ is defined over $\mathbb Q$ and $S_k(\Gamma(N), \mathbb{Q}(\zeta_N))^G \cong S_k(\Gamma, \mathbb{Q}).$

Action on cusp forms

Zywina [\[Zyw20\]](#page-20-3) computes the action of $GL_2(\mathbb{Z}/N\mathbb{Z})$ on q-expansions. Computes a basis for $S_2(\Gamma(N), \mathbb{Q}(\zeta_N))^G$.

Issues

- The space $\mathcal{S}_2(\Gamma(N), \mathbb{Q}(\zeta_N))$ is much larger than $\mathcal{S}_2(\Gamma, \mathbb{Q})$.
- Uses numerical approximation with large denominators.

Modular Symbols

•
$$
H_1(X_{\Gamma}; \mathbb{R}) = \Omega_{hol}^1(X_{\Gamma})^{\vee}
$$

\n• $\{z_1, z_2\} \mapsto (\omega \mapsto \int_{z_1}^{z_2} \omega)$

$$
\bullet \ \{z_1,z_2\}+\{z_2,z_3\}+\{z_3,z_1\}=0
$$

$$
\bullet \ \{z_1,z_1\}=0
$$

$$
\bullet\ \big\langle \{\alpha z_1,\alpha z_2\},\omega\big\rangle=\big\langle \{z_1,z_2\},\omega\circ\alpha\big\rangle
$$

Modular Symbols À

$$
\bullet \ \mathsf{F}=\bigoplus_{\alpha,\beta\in\mathbb{P}^1(\mathbb{Q})}\mathbb{Z}\cdot\{\alpha,\beta\},\ \mathsf{R}=\{\alpha,\beta\}+\{\beta,\gamma\}+\{\gamma,\alpha\}
$$

- \bullet M₂ = $(F/R)/(F/R)_{tor}$
- \bullet M_k = $\mathbb{Z}[X, Y]_{k-2} \otimes M_2$
- $M_k(\Gamma) = (M_k)_\Gamma$ modulo torsion.

Example

$$
X^3\otimes\{0,1/2\}-17XY^2\otimes\{\infty,1/7\}\in\mathbb{M}_5
$$

Theorem (Manin, [\[Man72\]](#page-19-2))

```
\varphi : \mathbb{M}_2(\Gamma) \to H_1(X_\Gamma, \text{cusps}, \mathbb{Z}) is an isomorphism.
```
Modular Symbols

Pairing with modular forms

$$
\begin{aligned} \left(\mathcal{S}_{k}(\Gamma)\oplus\bar{\mathcal{S}}_{k}(\Gamma)\right)&\times\mathbb{M}_{k}(\Gamma)\to\mathbb{C} \\ \left\langle(f_{1},f_{2}),P\{\alpha,\beta\}\right\rangle &=\int_{\alpha}^{\beta}f_{1}(z)P(z,1)dz+\int_{\alpha}^{\beta}f_{2}(z)P(\bar{z},1)d\bar{z} \end{aligned}
$$

Cuspidal modular symbols À

$$
\bullet \ \mathbb{B}_2 = \bigoplus_{\alpha \in \mathbb{P}^1(\mathbb{Q})} \mathbb{Z} \cdot \{\alpha\}, \ \mathbb{B}_k = \mathbb{Z}[X, Y]_{k-2} \otimes \mathbb{B}_2
$$

•
$$
\mathbb{B}_k(\Gamma) = (\mathbb{B}_k)_{\Gamma}
$$
 modulo torsion.

•
$$
\mathbb{S}_k(\Gamma) = \ker(\partial : \mathbb{M}_k(\Gamma) \to \mathbb{B}_k(\Gamma))
$$

Theorem (Shokurov, [\[Sho80\]](#page-20-4) + Merel, [\[Mer94\]](#page-19-3))

The pairing

$$
\langle \cdot, \cdot \rangle : \big(\mathcal{S}_k(\Gamma) \oplus \overline{\mathcal{S}}_k(\Gamma) \big) \times \mathbb{S}_k(\Gamma; \mathbb{C}) \to \mathbb{C}
$$

is a nondegenerate pairing of complex vector spaces

Manin symbols

$$
[P,\Gamma g]=g(P\{0,\infty\})\in \mathbb{M}_k(\Gamma)
$$

•
$$
\left\{\left[X^{k-2-i}Y^i,\Gamma g\right]\right\}_{i=0,g\in\Gamma\setminus SL_2(\mathbb{Z})}^{k-2}
$$
 generate $\mathbb{M}_k(\Gamma)$.

•
$$
x + xS = 0
$$
, $x + x(ST) + x(ST)^2 = 0$, $x - xJ = 0$

- Great for computation!
- Can compute the vector space $\mathbb{S}_k(\Gamma) = \big(\mathcal{S}_k(\Gamma) \oplus \bar{\mathcal{S}}_k(\Gamma) \big)^\vee$.
- If Γ is of real type, $S_k(\Gamma) = (\mathbb{S}_k(\Gamma)^+)^\vee$, so also $S_k(\Gamma)$.

That's great, but what about q -expansions?

Twisting method

Definition (twist of a modular form) Let $f = \sum_{n=1}^{\infty}$ $_{n=0}^{\infty}$ a_nqⁿ, $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}$ primitive. Write $f_\chi =$ $\frac{\infty}{ }$ $n=1$ $a_n\chi(n)q^n$.

Let

$$
S_N = \left(\begin{array}{cc} N & 1 \\ 0 & N \end{array}\right), \quad R_\chi = \sum_{u \bmod N} \overline{\chi}(u) S_N^u.
$$

Then $R_Y(f) = g(\overline{\chi}) \cdot f_Y$.

Theorem (Atkin, Li, $[A^+78]$ $[A^+78]$ + Box [\[Box20\]](#page-18-3))

Let $V \subseteq S_2(\Gamma(N), \mathbb{Q}(\zeta_N))$ be an irrep of $GL_2(\mathbb{Z}/N\mathbb{Z})$. Then there exists a newform f such that V is spanned by ${R_{\rm v} \circ \alpha_d(f)}_{\rm v.d.}$

Twisting modular symbols

Box in [\[Box20\]](#page-18-3) computes $\mathbb{S}_2(\Gamma(N))^G \cap V_i$ for each irrep. V_i , finds the newform f_i , and thus computes a basis of q -expansions.

Working directly with Γ

- In [\[Ass20\]](#page-18-4), can compute* Hecke operators for $\mathbb{S}_k(\Gamma)$.
- Finds systems of eigenvalues.
- Computes the action of Hecke operators on the *q*-expansions at all the cusps.
- In particular, recovers the above elements f_i .
- \bullet Given a *q*-expansion, can compute the period map.
- Also computes Eisenstein series could that be of use?

Demonstration...

Thanks for listening!

A Oliver L Atkin et al.

Twists of newforms and pseudo-eigenvalues ofw-operators. Inventiones mathematicae, 48(3):221–243, 1978.

Computing classical modular forms for arbitrary congruence subgroups.

arXiv preprint arXiv:2002.07212, 2020.

Burcu Baran.

An exceptional isomorphism between modular curves of level 13.

Journal of Number Theory, 145:273–300, 2014.

F. Jennifer S Balakrishnan, Netan Dogra, J Steffen Müller, Jan Tuitman, and Jan Vonk.

Explicit chabauty—kim for the split cartan modular curve of level 13.

Annals of mathematics, 189(3):885–944, 2019.

q-expansions of modular forms for general congruence subgroups using twist orbits.

to be published, 2020.

量

Yuri Bilu, Pierre Parent, and Marusia Rebolledo. Rational points on $x_0^+(p^r)$.

In Annales de l'Institut Fourier, volume 63, pages 957–984, 2013.

Ju I Manin.

Parabolic points and zeta-functions of modular curves. Mathematics of the USSR-Izvestiya, 6(1):19, 1972.

Barry Mazur.

Rational points on modular curves.

In Modular functions of one variable V, pages 107–148. Springer, 1977.

Loïc Merel.

Universal Fourier expansions of modular forms.

In On Artin's Conjecture for Odd 2-Dimensional Representations, pages 59–94. Springer, 1994.

量

Louis Mordell.

On the rational solutions of the indeterminate equation of the third and fourth degree.

In Proc. Camb. Phil. Soc., volume 21, pages 179–192, 1922.

SET Pietro Mercuri and René Schoof.

> Modular forms invariant under non-split Cartan subgroups. Mathematics of Computation, 89(324):1969–1991, 2020.

Jean-Pierre Serre.

Propriétés galoisiennes des points d'ordre fini des courbes elliptiques.

Invent. math, 15:259–331, 1972.

F Vyacheslav Vladimirovich Shokurov. The study of the homology of Kuga varieties. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 44(2):443–464, 1980.

Computing actions on cusp forms.

arXiv preprint arXiv:2001.07270, 2020.